Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?

نویسندگان

  • Clarissa M. L. Fraser
  • Frank Seebacher
  • Justin Lathlean
  • Ross A. Coleman
چکیده

A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone.

Thermal stress has been considered to be among the most important determinants of organismal distribution in the rocky intertidal zone. Yet our understanding of how body temperatures experienced under field conditions vary in space and time, and of how these temperatures translate into physiological performance, is still rudimentary. We continuously monitored temperatures at a site in central C...

متن کامل

The Heat-Shock Response: Its Variation, Regulation and Ecological Importance in Intertidal Gastropods (genus Tegula)1

SYNOPSIS. The enhanced synthesis of heat-shock proteins (hsps), called the heat-shock (or stress) response, is activated when environmental stress denatures proteins. Hsp synthesis is activated at the upper temperatures of an organism’s thermal range and is therefore thought to be critical for enhancing thermal tolerance limits in ectothermic animals. Here I show that the two temperate sister s...

متن کامل

Exposure to solar radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet.

Understanding the physiological abilities of organisms to cope with heat stress is critical for predictions of species' distributions in response to climate change. We investigated physiological responses (respiration and heart beat rate) of the ectotherm limpet Patella vulgata to heat stress events during emersion and the role of seasonal and microclimatic acclimatization for individual therma...

متن کامل

The Heat-Shock Response: Its Variation, Regulation and Ecological Importance in Intertidal Gastropods (genus Tegula).

The enhanced synthesis of heat-shock proteins (hsps), called the heat-shock (or stress) response, is activated when environmental stress denatures proteins. Hsp synthesis is activated at the upper temperatures of an organism's thermal range and is therefore thought to be critical for enhancing thermal tolerance limits in ectothermic animals. Here I show that the two temperate sister species T. ...

متن کامل

Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations

1. Theory predicts that population structure and dynamics affect a population’s capacity for adaptation to environmental change. For isolated, small and fragmented populations at the trailing edge of species distributions, loss of genetic diversity through random genetic drift may reduce adaptive potential and fitness levels for complex traits. This has important consequences for understanding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016